If it's not what You are looking for type in the equation solver your own equation and let us solve it.
175-3x^2=4x
We move all terms to the left:
175-3x^2-(4x)=0
a = -3; b = -4; c = +175;
Δ = b2-4ac
Δ = -42-4·(-3)·175
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-46}{2*-3}=\frac{-42}{-6} =+7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+46}{2*-3}=\frac{50}{-6} =-8+1/3 $
| 1/2y-1=1/3-y | | 2.5X7c=2.50 | | (5x+16)°=(8x-11)° | | 9x-7+7x-3=90 | | (24+x)-21=10 | | 0.05x+0.06(10000-x)=575 | | -2(x2)/5=x+5= | | 28+s=-2 | | 6x^2-11x+6=−4x+4 | | 5+7c=2.80 | | (6x+1)=(5x+28) | | 1+a+5=1 | | 2(x^2+1)+1=9 | | (y-35)+12=32 | | -2x-14=17 | | 3(x^2+2)-8=1 | | 2/5x-3=-1/4x+1/20 | | 7d+8+4d-6=90 | | (180-x)-x=180 | | 3/5x=-5/2x+9/10 | | x-0.1x=15639 | | 620=(0.1x^2)-(16x) | | (35+y)-15=31 | | A=s^2+2s | | 8(-9x+5)-1=2x+1 | | 3=-3(11-s)/8 | | -8(-3x+8)=-9x+2 | | 2x-9=-6x-2 | | 86-11x/3=3 | | 2/3(3q+3)=4q-6 | | u−748=232 | | x−8= 8−x |